
 IMP Series Device Driver Library User Manual

IMP Series
Device Driver Library

User Manual

Version: V.1.01

Date: 2013.01

 http://www.epcio.com.tw

http://www.epcio.com.tw/

 IMP Series Device Driver Library User Manual

1

Table of Content

I. Introduction to the Device Driver Library .. 2

II. Motion Control Card Base Address, Interrupt and Reset

Function Setting .. 4

III. Pulse Output Control . 6

III.1 Basic Pulse Output Control . 6

III.2 Control of Pulse Command Queue (FIFO) .. 9

III.3 Outputting Pulse Command Control . 10

III.4 Emergency Stop of Pulse Output . 11

III.5 Counting the Number of Output Pulses .. 11

III.6 Cyclic Interrupt Function .. 12

III.7 Minimum Stock Interrupt . 18

IV. Encoder Control . 25

IV.1 Basic Sett ings and Functions .. 25

IV.2 Encoder Value Triggered Interrupt Service Function 28

IV.3 Index Interrupt . 32

IV.4 Counter Value Latch Function .. 35

V. Local Input and Output (Local I/O) Control . 40

V.1 Basic Settings and Functions .. 41

V.2 Hardware Limit Switch Interrupt . 48

V.3 Timer Timing Interrupt . 52

 IMP Series Device Driver Library User Manual

2

I. Introduction to the Device Driver Library

The IMP device driver library can be used to drive the intelligent motion control

platform (IMP), which was developed using the intelligent motion control chip (IMC).

 Based on the functions, the subsequent sections will be categorized as the

followings to explain how to use the IMP device driver library.

▲Global Control Interface Interrupt and reset function settings

▲Pulse Generator Control Interface Set motion pulse output control

▲Encoder Counter Interface Set encoder input and counter control

▲Local I/O Control Interface Local input/output control

▲Remote I/O Interface Remote input/output control

▲ADC Control Interface Analog to digital input control

▲PCL Control Interface Position closed loop control setting

▲DAC Control Interface Digital to analog output control

Reference Manuals：

Hardware User Manual

IMP-2 Hardware User Manual

IMP-WB-2 Hardware User Manual

 IMP Series Device Driver Library User Manual

3

Driver User Guide

IMP series Device Driver Library Reference Manual

IMP series Device Driver Library Example Manual

IMP Series Device Driver Library Integrated Testing

Environment User Manual

 IMP Series Device Driver Library User Manual

4

II. Motion Control Card Base Address, Interrupt and

Reset Function Setting

The first step in using the IMP Device Driver Library is to initialize

the IMP. The following function initialization motion control card can

be used：

IMC_OpenDevice();

If the function return value of IMC_OpenDevice() is TRUE(1), it

means that the initial ization of the motion control platform is successful,

and other functions can be used.

To close the IMP, use IMC_CloseIfOpen(). This function will close

all the functional modules in the IMP. If an interrupt is activated when

using the IMP , the interrupt vector will also be restored.

The following code shows how to use the IMP Device Driver Library,

which uses IMC_GLB_ResetModule() to reset the specified IMC module.

This function is usually used in conjunction with the init ialization

function.

if (IMC_OpenDevice())

{

// Reset the IMP

IMC_GLB_ResetModule(RESET_ALL);

/*

 IMP Series Device Driver Library User Manual

5

The code that the user wants to execute

*/

IMC_CloseIfOpen(); // Shut down the IMP.

}

 IMP Series Device Driver Library User Manual

6

III. Pulse Output Control

III.1 Basic Pulse Output Control

A set of IMP can equip up to 8 output channels (Channel 0 ~ Channel

7) and use Pulse Generator Engine (PGE) module to control pulse output.

This module control mechanism consists of two major steps as follows：

1. Send the pulse command to the pulse command queue (FIFO) of the

specified channel. The pulse command queue can store a total of 64

pulse commands.

2. The pulse generator uses IPO time as the time interval (IPO time can

be flexibly set). Each time a pulse command from the pulse command

queue is automatically read and based on the set output format, these

pulses are evenly sent out by the specified channel within the IPO

time.

These two steps are shown in the figure below. It is important to

note that each output channel has its own command queue. Taking the

IMP as an example, i t has a total of 8 output channels; hence, there are

eight command queues. This figure also shows that each IPO time

consumes a pulse command.

 IMP Series Device Driver Library User Manual

7

As shown in the figure above, the following steps must be completed

prior to sending out the pulse command, which include：

1. Use IMC_PGE_SetIPOTime() to set IPO time

2. Set the pulse output format of the specified channel, which includes

setting：

a. Setting pulse output format

 IMC_PGE_SetOutputFormat()

3. Use IMC_PGE_Start() to start PGE mechanism

 See Also IMC_PGE_Start()

4. Use IMC_PGE_SendPulse() to send pulse command to the command

queue of the specified channel

The following code shows how to send a pulse command after

initializing the motion control card. In the IMP, when there is position

(pulse) or velocity (voltage) command output,

 IMP Series Device Driver Library User Manual

8

IMC_LIO_SetMotionEnable() is required to enable the output function;

some servo systems may need to call IMC_LIO_SetServoOn() to turn on

the servo on of the servo motor driver, allowing the system to operate

properly. The complete calling procedure is as follows：

/ / Turn on pulse and velocity motion command output function

IMC_LIO_SetMotionEnable(1);

// Turn on the servo on variable for Channel 0

IMC_LIO_SetServoOn(0);

// Set IPO time = 10 ms

IMC_PGE_SetIPOTime(10);

// Set the output format of Channel 0 to Pulse / Direction format

IMC_PGE_SetOutputFormat(0, PGE_FMT_PD);

// Start the PGE mechanism

IMC_PGE_Start(1);

/ / Send out a pulse command to request Channel 0 to send 200 pulses

in one IPO time

IMC_PGE_SendPulse(0, 200);

 IMP Series Device Driver Library User Manual

9

In addition, using IMC_PGE_SetClockDivider() and

IMC_PGE_SetClockNumber() can set the upper limit of the total number

of pulse that can be sent in each IPO time. By using

IMC_PGE_SetIPOTime(), i t will automatically calculate and set the

upper limit of the total number of pulse with the set IPO time. The total

number of pulse included in each pulse command sent by

IMC_PGE_SendPulse() must meet this limit.

III.2 Control of Pulse Command Queue (FIFO)

The IMP Device Driver Library provides the following functions to

control and read the status of the command queue.

1. IMC_PGE_CheckFifoEmpty() can be used to check whether there is

any pulse command stored in the command queue of the specified

channel.

2. IMC_PGE_CheckFifoFull() can be used to check whether there is any

space available to store pulse command in the command queue of the

specified channel. Each command queue has 64 storage spaces.

3. IMC_PGE_GetStockCount() can be used to count the number of pulse

commands are stored but not yet executed in the command queue of

the specified channel.

 IMP Series Device Driver Library User Manual

10

The functions as mentioned above can be applied to utilize the space

of the command queue fully. Pulse command can be placed into the

command queue in advance to avoid the occurrence of motion

discontinuity due to insufficient pulse command, improving the

operation stability of the system.

III.3 Outputting Pulse Command Control

The IMP Device Driver Library provides the following functions to

control and read pulse commands that are being sent out and are no

longer in the command queue.

1. IMC_PGE_GetCurrentCommand() can be used to read the pulse

commands that are being sent out by the specified channel, including

positive and negative signs. From the positive and negative signs of

this pulse command, the current direction of motion can be

determined.

2. IMC_PGE_SetOutputFormat (specified channel, PGE_FMT_NO) can

be used to make the output of the specified channel invalid. When

applied, the output of the commands in the command queue and the

commands in execution will stop.

 IMP Series Device Driver Library User Manual

11

III.4 Emergency Stop of Pulse Output

In some cases, the output of pulse must be stopped urgently. The

following functions provided by the IMP Device Driver Library can meet

this requirement.

1. IMC_PGE_Start(0) can be used to turn off the PGE mechanism, which

will stop the output of all channels.

2. If it is required to stop the current command in the command queue,

function IMC_PGE_SetOutputFormat can be used to make the output

invalid.

III.5 Counting the Number of Output Pulses

The IMP Device Driver Library provides pulse counting functions

to obtain the total number of pulses that have been output. These

functions include：

1. Use IMC_PGE_EnablePulseCounter() to turn on the pulse count

function of the specified channel.

2. Use IMC_PGE_ClearPulseCounter() to zero the value of the pulse

counter of the specified channel.

 IMP Series Device Driver Library User Manual

12

3. Use IMC_PGE_GetPulseCount() to read the value of the pulse counter

of the specified channel.

Before using IMC_PGE_GetPulseCount(), it is required to enable

the counting function first, which can be done by calling

IMC_PGE_EnablePulseCounter(). The following code shows how to read

the total number of pulses sent out by Channel 0.

// Clear the value of the pulse counter of Channel 0

IMC_PGE_ClearPulseCounter(0, 1);

/ / Enable the pulse counting function of Channel 0

IMC_PGE_EnablePulseCounter(0, 1);

long lPulseCount;

// Read the total number of pulses sent out by Channel 0

lPulseCount = IMC_PGE_GetPulseCount(0, &lPulseCount);

To verify whether the pulse output function is operating properly,

the value of the pulse counter is usually compared with the number of

pulses actually sent out by using IMC_PGE_SendPulse().

III.6 Cyclic Interrupt Function

The IMP Device Driver Library provides a cyclic interrupt function.

When the cyclic interrupt function is enabled, the driver library will use

 IMP Series Device Driver Library User Manual

13

IPO time as the cycling period. For every IPO time, the user-defined

PGE Interrupt Service Routine (ISR) will be triggered automatically as

shown in the following figure.

To use the cyclic interrupt function, the following steps must be

completed：

1. Declare and define the user-defined PGE ISR. Using the following

declaration：

typedef void(IMC_LIB_CALL *PGEISR)(PGEINT *p);

Therefore, the user-defined DDA ISR can be defined as follows：

void _stdcall PGE_ISR_Function(PGEINT *pstINTSource)

{

 IMP Series Device Driver Library User Manual

14

 if (pst INTSource->CYCLE)// Determine whether a cyclic

interrupt has occurred

 {

 /*

 The code to be executed after the cyclic interrupt occurs

 */

 }

 }

In the PGE ISR, i t is necessary to determine whether this function

is triggered by a cyclic interrupt. In addit ion, the declaration of the

PGE ISR needs to add the keyword, _stdcall . However, if the

standalone mode is used, the keyword, IMC_LIB_CALL, needs to be

added.

2. Link PGE ISR using the following function：

IMC_PGE_SetISRFunction(PGE_ISR_Function)

After initializing the motion control card, the PGE ISR needs to be

linked. The function indicator of the ISR is delivered to

IMC_PGE_SetISRFunction().

3. Enable the cyclic interrupt function using

IMC_PGE_EnableCycleInterrupt()

 IMP Series Device Driver Library User Manual

15

 See Also IMC_PGE_EnableCycleInterrupt()

The following code will show how to use the cyclic interrupt function.

void _stdcall PGE_ISR_Function(PGEINT *pstINTSource)

{

 if (pst INTSource->CYCLE)// Determine whether a cyclic

interrupt has occurred

 {

 /*

 The code to be executed after the cyclic interrupt occurs

 */

 }

 }

if (IMC_OpenDevice())

{

‧

IMC_PGE_SetISRFunction(PGE_ISR_Function);

IMC_PGE_EnableCycleInterrupt(1);

‧

}

A cyclic interrupt is hardware interrupt with a more accurate

 IMP Series Device Driver Library User Manual

16

triggering period. It is usually used for tasks that have periodic

characteristics and require on-time execution. Using a cyclic

interrupt function together with command queue status inspection

related functions can ensure that the commands stored in the queue

can meet the immediate demand of continuous motion, avoiding the

circumstance of motion interruption caused by the lack of command

in the queue.

Assuming that a total of 200 pulse commands are required to send

out, but the command queue can only store up to 64 commands, the ISR

is triggered by using the cyclic interrupt. At this moment, the number of

commands currently stored in the queue is read in this function, and the

remaining storage spaces are calculated. Such information is then used

to determine the commands that can be sent to the queue. These actions

will be repeated in the ISR until 200 commands are sent. The code below

illustrates this process.

int nCount = 200; // A total of 200 pulse commands are required

to be sent

int nPulse[200] = 150; // 200 commands, commands can be

 pre-planned

void _stdcall PGE_ISR_Function(PGEINT *pstINTSource)

{

 IMP Series Device Driver Library User Manual

17

 WORD wStockNo;

 if (pst INTSource->CYCLE)//Determine whether cyclic

interrupt has occurred

 {

 if (nCount)// nCount equals 0 when 200 commands are sent

 {

 / / Read the number of commands currently stored in

the queue of Channel 0

 IMC_PGE_GetStockCount(0, &wStockNo);

 / / “i < 64 – wStockNo” because the command queue

has only 64 storage spaces

 for (int i = 0;i < 64 - wStockNo && nCount;i++)

 {

 IMC_PGE_SendPulse(0, nPulse[200 - nCount])

 nCount--;

 }

 }

 }

 }

 IMP Series Device Driver Library User Manual

18

Since cyclic interrupts have the characteristic of periodic

occurrence, it is often used to check various states of the system, such

as the input and output status of I/O contact point .

III.7 Minimum Stock Interrupt

The IMP Device Driver Library provides command queue minimum

stock number interrupt (referred to as minimum stock interrupt) function.

When the minimum stock number is set and the minimum stock interrupt

function of the specified channel is enabled, the user-defined PGE ISR

will be triggered and executed once the command in a queue of the

specified channel reaches the minimum stock number as shown in the

following figure.

To use the minimum stock interrupt function, the following steps must

be completed：

 IMP Series Device Driver Library User Manual

19

1. Declare and define the user-defined PGE ISR. Using the following

declaration：

typedef void(IMC_LIB_CALL *PGEISR)(PGEINT *p)

Therefore, the user-defined PGE ISR can be defined as follows：

void _stdcall PGE_ISR_Function(PGEINT *pstINTSource)

{

 // Determine whether minimum stock interrupt of Channel 0

occurs

 if (pst INTSource->FIFO0)

 {

 /*

 The code to be executed after the minimum stock interrupt

of Channel 0 occurs.

 */

 }

 // Determine whether minimum stock interrupt of Channel 1

occurs

 if (pst INTSource->FIFO1)

 {

 IMP Series Device Driver Library User Manual

20

 /*

 The code to be executed after the minimum stock interrupt

of Channel 1 occurs.

 */

 }

‧

‧

 }

In the PGE ISR, it is necessary to determine whether this

function is triggered by the minimum stock interrupt. pstINTSource-

>FIFO0 ~ pst INTSource->FIFO7 is used to determine whether

minimum stock interrupt of Channel 0 ~ Channel 7 occurs. In addition,

the declaration of the PGE ISR needs to add the keyword, _stdcall.

However, if the standalone mode is used, the keyword,

IMC_LIB_CALL, needs to be added.

2. Link PGE ISR using the following function：

IMC_PGE_SetISRFunction(PGE_ISR_Function);

After initializing the motion control card, the PGE ISR needs to be

linked. The function indicator of the ISR is delivered to

IMC_PGE_SetISRFunction().

 IMP Series Device Driver Library User Manual

21

3. Enable the minimum stock interrupt function of the specified channel

using IMC_PGE_EnableStockInterrupt().

 See Also IMC_PGE_EnableStockInterrupt()

The following code shows how to use the minimum stock interrupt

function.

void _stdcall PGE_ISR_Function(PGEINT *pstINTSource)

{

 // Determine whether command queue interrupt of Channel 0

occurs

 if (pst INTSource->FIFO0)

 {

 /*

 The code to be executed after the minimum stock interrupt

occurs

 */

 }

 }

‧

‧

‧

 IMP Series Device Driver Library User Manual

22

if (IMC_OpenDevice())

{

‧

IMC_PGE_SetISRFunction(PGE_ISR_Function);

IMC_PGE_EnableStockInterrupt(0, 1);

‧

}

The minimum stock interrupt is also a hardware interrupt, and the

interrupt occurs only when the interrupt condition is met. Compared with

the cyclic interrupt that occurs periodically, the minimum stock interrupt

would not increase the loading of the system when executing. Usually,

the use the minimum stock interrupt function in conjunction with the

command queue status inspection related functions can ensure that the

commands in the queue will not go under a certain set value (i.e., the

command queue minimum stock number), avoiding the circumstance of

motion interruption caused by the lack of command in the queue.

Assuming that a total of 200 pulse commands are required to send

out, but the queue can only store up to 64 commands, the ISR is triggered

by using the minimum stock interrupt. At this moment, the number of

commands currently stored in the queue is read in this function, and the

remaining storage spaces are calculated. Such information is then used

to determine the commands that can be sent to the queue. These actions

will be repeated in the ISR until 200 commands are sent.

 IMP Series Device Driver Library User Manual

23

However, in order to trigger the minimum stock interrupt, it is

required to first send out 64 commands to the queue to meet the

triggering condition for minimum stock interrupt (that is , when the

number of commands stored in the queue is reduced from 31 to 30). The

following code illustrates this process.

int nCount = 200; // A total of 200 pulse commands are required

to be sent

int nPulse[200] = 150; // 200 commands, commands can be pre-

planned

‧

‧

for (int i = 0;i < 64;i++) // Send 64 commands first to the queue of

 Channel 0

{

IMC_PGE_SendPulse(0, nPulse[200 - nCount])

nCount--;

}

void _stdcall PGE_ISR_Function(PGEINT *pstINTSource)

{

 WORD wStockNo;

 IMP Series Device Driver Library User Manual

24

 if (pst INTSource->FIFO0)

 {

 if (nCount)// nCount equals 0 when 200 commands are

sent

 {

 / / Read the number of commands currently stored in

the queue of Channel 0

 IMC_PGE_GetStockCount(0, &nStockNo);

 / /

 for (int i = 0;i < 64 - nStockNo && nCount;i++)

 {

 IMC_PGE_SendPulse(0, nPulse[200 - nCount])

 nCount--;

 }

 }

 }

 }

 IMP Series Device Driver Library User Manual

25

IV. Encoder Control

IV.1 Basic Settings and Functions

The IMP

 has up to 8 channels for inputting encoder signals, namely Channel 0 ~

Channel 7. To use the functions related to encoder control, the following

steps must be completed：

1. Use IMC_ENC_SetInputFormat() to set the input signal format of the

specified channel. The input signal format must match the hardware

setting. When the input signal is the motor encoder feedback signal,

please refer to the motor or driver setting. When the regular hand

wheel is connected, the input signal format must be the set to A/B

Phase (the default setting is A/B Phase input).

2. Use IMC_ENC_SetInputRate() to set the counter signal decoding rate

of the specified channel. The decoding rate is valid when the input

encoder format is A/B Phase. This function works only if

IMC_ENC_SetInputFormat() is set to A/B Phase input.

3. Use IMC_ENC_StartCounter() to enable the counting function of the

counter. Before using this function, IMC_ENC_ClearCounter() is

usually called first to reset the counter value of the counter to zero.

 IMP Series Device Driver Library User Manual

26

After completing the above sett ings, IMC_ENC_ReadCounter() can

be used to read the encoder value of the specified channel.

The following code shows how to read the encoder value of Channel 0.

long lCounter;

// Set the input format of Channel 0 to A/B Phase

IMC_ENC_SetInputFormat(0, ENC_TYPE_AB);

// Set the signal decoding rate of Channel 0 to x4

IMC_ENC_SetInputRate(0, ENC_RATE_X4);

// Zero the value of the counter of Channel 0

IMC_ENC_ClearCounter(0, 1);

/ / Enable the counting function of Channel 0

IMC_ENC_StartCounter(0, 1);

// Read the value of the counter of Channel 0

IMC_ENC_ReadCounter(0, &Counter);

For the needs of wiring, the IMP Device Driver Library provides the

following functions to inverse the signal sent to the counter input pin：

 IMP Series Device Driver Library User Manual

27

1. Use IMC_ENC_EnableInAInverse() to inverse the inA pin of the

counter input signal of the specified channel. The default set ting is

not inversed.

 See Also IMC_ENC_EnableInAInverse()

2. Use IMC_ENC_EnableInBInverse() to inverse the inB pin of the

counter input signal of the specified channel. The default set ting is

not inversed.

 See Also IMC_ENC_EnableInBInverse()

3. Use IMC_ENC_EnableInCInverse() to inverse the inC pin of the

counter input signal of the specified channel. The default set ting is

not inversed.

 See Also IMC_ENC_EnableInCInverse()

4. Use IMC_ENC_EnableInABSwap() to swap the inA and inB pins in

the counter input signal of the specified channel before the signal

enters the counter. The default setting is no signal swapping required.

 See Also IMC_ENC_EnableInABSwap()

 IMP Series Device Driver Library User Manual

28

IV.2 Encoder Value Triggered Interrupt Service Function

The encoder value triggered ISR provided by the IMP Device Driver

Library (referred to as the encoder value triggered interrupt function)

allows the user to set a comparison value for the specified channel. When

the function of the specified channel is activated and the encoder value

of the channel is equal to the comparison value, the comparator will

automatically trigger and execute the user-defined ISR. To use the

encoder value to trigger the interrupt function, the following steps must

be completed：

1. Define and declare the user-defined ENC ISR, using the following

declaration：

typedef void(IMC_LIB_CALL *ENCISR)(ENC INT *p);

Therefore, the user-defined ENC ISR can be defined as follows：

void _stdcall ENC_ISR_Function (ENCINT *pstINTSource)

{

 // Determine whether the ISR is triggered by the counting

 value of Channel 0

 if (pst INTSource->COMP0)

 {

 /*

 IMP Series Device Driver Library User Manual

29

 The code to be executed after the interrupt is triggered by

the encoder value

 */

 }

 }

In the ENC ISR, it is necessary to determine whether this

function is triggered by the encoder value. In the related to encoder

ISR, after the encoder value triggers the ENC interrupt function,

Channel 0 ~ Channel 7 uses COMP0 ~ COMP7 to determine which

channel 's encoder value caused the triggering. The relationship

between each channel and COMP0 ~ COMP7 is as follows.

Channel 0： pstINTSource -> COMP0 ----

Channel 1： pstINTSource -> COMP1 ----

Channel 2： pstINTSource -> COMP2 ----

Channel 3： pstINTSource -> COMP3 ----

Channel 4： pstINTSource -> COMP4 ----

Channel 5： pstINTSource -> COMP5 ----

Channel 6： pstINTSource -> COMP6 ----

Channel 7： pstINTSource -> COMP7 ----

Therefore, pstINTSource->COMP0 ~ pstINTSource->COMP7

are used to determine whether the ISR is triggered by the encoder

 IMP Series Device Driver Library User Manual

30

value of the Channel 0 ~ Channel 7. In addition, the declaration of

the ENC ISR needs to add the keyword, _stdcall. However, if the

Standalone mode is used, the keyword, IMC_LIB_CALL, needs to

be added.

2. Link user-defined ENC ISR using the following function：

IMC_ENC_SetISRFunction(ENC_ISR_Function);

After initializing the IMP, the ENC ISR needs to be linked. The

function indicator of the ISR is delivered to

IMC_ENC_SetISRFunction().

3. Set the counter comparison value of the specified channel using

IMC_ENC_SetComparator().

4. Use IMC_ENC_EnableComparatorInterrupt() to enable the ISR

triggered by the encoder value of the specified channel.

The following code only triggers the ISR after the encoder value in

Channel 4 equals the set value.

void _stdcall ENC_ISR_Function(ENCINT *pstINTSource)

{

 // Determine whether it is triggered by the encoder counting

 IMP Series Device Driver Library User Manual

31

value of the 4th channel

 if (pst INTSource->COMP4)

 {

 /*

 The code to be executed after the encoder value triggers the

ISR

 */

 }

}

．

．

if (IMC_OpenDevice())

{

．

IMC_ENC_SetISRFunction(ENC_ISR_Function);

// Set the counter comparison value of Channel 4 to 10000.

IMC_ENC_SetComparator(4, 10000);

// Enable the ISR triggered by the encoder value of Channel 4.

IMC_ENC_EnableComparatorInterrupt(4, 1);

．

}

 IMP Series Device Driver Library User Manual

32

IV.3 Index Interrupt

The IMP Device Driver Library provides the encoder index interrupt

function that triggers a user-defined ISR when the encoder 's index (Z

Phase) signal is input. To use the index interrupt function, the following

settings must be completed：

1. Define and declare the user-defined ENC ISR. Using the following

declaration：

typedef void(IMC_LIB_CALL *ENCISR)(ENC INT *p);

Therefore, the user-defined ENC ISR can be defined as follows：

void _stdcall ENC_ISR_Function (ENCINT *pstINTSource)

{

 // Determine whether it is triggered by the index signal of the

channel 0

 if (pst INTSource->INDEX0)

 {

 /*

 The code to be executed after the index interrupt occurs

 */

 IMP Series Device Driver Library User Manual

33

 }

 }

In the ENC ISR, it is necessary to determine whether this function

is triggered by the index interrupt. In the encoder-related interrupt

function, after the index interrupt occurs, Channel 0 ~ Channel 7

uses INDEX0 ~ INDEX7 to determine which channel 's index signal

caused the triggering. The relationship between each channel and

INDEX0 ~ INDEX7 is as follows.

Channel 0： pstINTSource -> INDEX0 ----

Channel 1： pstINTSource -> INDEX1 ----

Channel 2： pstINTSource -> INDEX2 ----

Channel 3： pstINTSource -> INDEX3 ----

Channel 4： pstINTSource -> INDEX4 ----

Channel 5： pstINTSource -> INDEX5 ----

Channel 6： pstINTSource -> INDEX6 ----

Channel 7： pstINTSource -> INDEX7 ----

Therefore, pstINTSource->INDEX0 ~ pstINTSource->INDEX7 are

used to determine whether the index interrupt of Channel0 ~

Channel7 occurs.

In addit ion, the declaration of the ENC ISR needs to add the keyword,

_stdcall. However, if the Standalone mode is used, the keyword,

 IMP Series Device Driver Library User Manual

34

IMC_LIB_CALL, needs to be added.

2. Link ENC ISR using the following function：

IMC_ENC_SetISRFunction(ENC_ISR_Function);

After initializing the motion control card, the ENC ISR needs to be

linked. The function indicator of the ISR is delivered to

IMC_ENC_SetISRFunction().

3. Enable the index interrupt triggering function of the specified channel

using IMC_ENC_EnableIndexInterrupt().

 See Also IMC_ENC_GetIndexStatus()

The following code only enables the index interrupt function of

Channel 5.

void _stdcall ENC_ISR_Function(ENCINT *pstINTSource)

{

// Determine whether the function is triggered by the index interrupt

of the Channel 5

if (pst INTSource->INDEX5)

{

 /*

 The code to be executed after the index interrupt occurs

 IMP Series Device Driver Library User Manual

35

 */

}

}

．

．

if (IMC_OpenDevice())

{

．

．

IMC_ENC_SetISRFunction(ENC_ISR_Function);

// Enable the index interrupt triggering function of Channel 5

IMC_ENC_EnableIndexInterrupt(5, 1);

．

．

}

IV.4 Counter Value Latch Function

The IMP Device Driver Library provides the counter value latch

function. Users can set the triggering signal source. These triggering

signal sources are used to trigger the action of recording the value of the

counter in the latch register. Users can then use the function provided by

the driver library to read the value recorded in the latch register.

The triggering signal source of the counter triggering latch function

 IMP Series Device Driver Library User Manual

36

is divided into two categories, namely the index signal triggering or the

external condition triggering. To use the counter latch function, users

need to apply first IMC_ENC_Set IndexLatchSource () or

IMC_ENC_SetExternalLatchSource () to set whether index signal or

external condition is the triggering signal source. The function is

declared as follows：

void IMC_ENC_SetIndexLatchSource(WORD Channel,

 WORD Source);

void IMC_ENC_SetExternalLatchSource (WORD Channel,

 WORD Source);

Channel indicates the numbering of the channels, ranging from 0 to

7.Source indicates the triggering source. There are eight types of

triggering sources to trigger the latch counter value separately for index

signal triggering and external condition triggering. When setting,

multiple conditions can be combined. These triggering signal sources

include：

NO_TRIG_ENC No triggering signal source selected

INDEX0_TRIG_ENC Index signal of Channel 0 encoder

INDEX1_TRIG_ENC Index signal of Channel 1 encoder

INDEX2_TRIG_ENC Index signal of Channel 2 encoder

INDEX3_TRIG_ENC Index signal of Channel 3 encoder

 IMP Series Device Driver Library User Manual

37

INDEX4_TRIG_ENC Index signal of Channel 4 encoder

INDEX5_TRIG_ENC Index signal of Channel 5 encoder

INDEX6_TRIG_ENC Index signal of Channel 6 encoder

INDEX7_TRIG_ENC Index signal of Channel 7 encoder

OTP0_TRIG_ENC Channel 0 positive l imit switch input signal

OTP1_TRIG_ENC Channel 1 positive l imit switch input signal

OTP2_TRIG_ENC Channel 2 positive l imit switch input signal

OTP3_TRIG_ENC Channel 3 positive l imit switch input signal

OTP4_TRIG_ENC Channel 4 positive l imit switch input signal

OTP5_TRIG_ENC Channel 5 positive l imit switch input signal

OTP6_TRIG_ENC Channel 6 positive l imit switch input signal

OTP7_TRIG_ENC Channel 7 positive l imit switch input signal

OTN0_TRIG_ENC Channel 0 negative l imit switch input signal

OTN1_TRIG_ENC Channel 1 negative l imit switch input signal

OTN2_TRIG_ENC Channel 2 negative l imit switch input signal

OTN3_TRIG_ENC Channel 3 negative l imit switch input signal

OTN4_TRIG_ENC Channel 4 negative l imit switch input signal

OTN5_TRIG_ENC Channel 5 negative l imit switch input signal

OTN6_TRIG_ENC Channel 6 negative l imit switch input signal

OTN7_TRIG_ENC Channel 7 negative l imit switch input signal

When the triggering signal source setting is completed, the value of

the counter will be recorded in the latch register when these signals occur.

However, before starting the counter latch function using

 IMP Series Device Driver Library User Manual

38

IMC_ENC_StartCounter(), users need to call

IMC_ENC_SetCounterLatchMode() to set the latch mode. This function

is declared as follows：

IMC_ENC_SetCounterLatchMode(WORD Channel,

WORD Mode)

Channel indicates the numbering of the channel, ranging from 0 to

7. Mode is the latch triggering mode, which includes：

ENC_TRIG_FIRST When the triggering condition is met for

the first time, the value of the counter is

latched and will no longer change.

ENC_TRIG_LAST When the triggering condition is met, the

value of the counter is latched. However, a

new value will be latched if the new

condition is met again.

Users can use IMC_ENC_ReadLatchCounter() to read the value

recorded in the latch register of the specified channel.

The following code shows how to set the triggering source to the

index signal of the encoder connected to Channel 0, and read the latched

value when the index signal occurs. Users can obtain the real position of

the index signal from the latched value.

 IMP Series Device Driver Library User Manual

39

void _stdcall ENC_ISR_Function(ENCINT *pstINTSource)

{

// Determine whether the trigger is made by the index signal of the

0th channel

if (pst INTSource->INDEX0)

{

// The code to be executed after the index interrupt occurs

long lLatchValue

// Read the value in the latch register

IMC_ENC_ReadLatchCounter(0, &lLatchValue)

}

}

．

．

if (IMC_OpenDevice())

{

．

．

IMC_ENC_SetISRFunction(ENC_ISR_Function);

 // Set the index signal of Channel 0 encoder as the triggering source

for the latch counter of Channel 0.

 IMC_ENC_SetIndexLatchSource(0, INDEX0_TRIG_ENC);

 IMP Series Device Driver Library User Manual

40

// Set the latch triggering mode of the Channel 0 latch counter to

continuous triggering

IMC_ENC_SetCounterLatchMode(0, ENC_TRIG_LAST);

．

．

}

V. Local Input and Output (Local I/O) Control

There are 42 local input and output which can be used as the input

and output (I/O). These I/O have been designed on the IMP for specific

applications, including：

The inputs have a total of 25 ports, which include：

 Home Sensor 8 inputs

 Limit Switch Positive(+) 8 inputs

 Limit Switch Negative(-) 8 inputs

 Status for Emergency Stop 1 input

The outputs have a total of 17 ports and 1 special output for motion

enabled, which include ：

 IMP Series Device Driver Library User Manual

41

 Servo On/Off 8 outputs

 LED Light 8 outputs

 Enabling Position Ready 1 output

 Motion Enable 1 output

The following section will explain how to use these local inputs and

outputs.

V.1 Basic Settings and Functions

The local digital input and output are sorted into groups with eight

ports in each group. The 40 inputs and outputs are divided into OT+, OT-,

HOME, SERVO and LED according to the pre-defined applications. The

OT+ / OT- / HOME are the inputs in default, while the SERVO / LED are

the outputs in default. The default conditions of all the inputs and

outputs are set to disable (0, no output and input).

Taking OT+ as an example, IMC_LIO_GetPlusLimitLDIInput() can

be used to read the digital signal input value of OT+ 0 ~ OT+ 7. This

function is declared as follows：

 IMC_LIO_GetPlusLimitLDIInput(DWORD *LDIState);

Bit 0~Bit 7 of *LDIState obtained by this function represents the

input status of OT+ 0 ~ OT+ 7, while Bit 8 ~ Bit 31 has no meaning.

 IMP Series Device Driver Library User Manual

42

 Therefore, if the input value obtained by using

IMC_LIO_GetPlusLimitLDIInput(&dwInput) is 0x0002, it means that

the current digit input value of OT+1 is 1, since 0x0002 in terms of the

binary system is equivalent to 0b0000000000000010. The value of the

bit position associated with OT+1 is 1.

 See Also IMC_LIO_GetMinusLimitLDIInput()

 IMC_LIO_GetHomeSensorLDIInput()

When it is required to use the input and output of the functions as

mentioned above, the meaning of each port can be found in the following

table.：

IMP local input and output (Local I/O)

LIO Definition Corresponding SCSI II

position

Note

0 Channel 0 OT+ 10（ 100Pin External input） Able to trigger

an interrupt

1 Channel 1 OT+ 60（ 100Pin External input） Able to trigger

an interrupt

2 Channel 2 OT+ 14（ 100Pin External input） Able to trigger

an interrupt

3 Channel 3 OT+ 64（ 100Pin External input） Able to trigger

an interrupt

4 Channel 4 OT+ 18（ 100Pin External input） Able to trigger

an interrupt

5 Channel 5 OT+ 68（ 100Pin External input） Able to trigger

an interrupt

 IMP Series Device Driver Library User Manual

43

6 Channel 6 OT+ 7（ 40Pin External input） Able to trigger

an interrupt

7 Channel 7 OT+ 8（ 40Pin External input） Able to trigger

an interrupt

8 Channel 0 OT- 11（ 100Pin External input） Able to trigger

an interrupt

9 Channel 1 OT- 61（ 100Pin External input） Able to trigger

interrupt

10 Channel 2 OT- 15（ 100Pin External input） Able to trigger

an interrupt

11 Channel 3 OT- 65（ 100Pin External input） Able to trigger

an interrupt

12 Channel 4 OT- 19（ 100Pin External input） Able to trigger

an interrupt

13 Channel 5 OT- 69（ 100Pin External input） Able to trigger

an interrupt

14 Channel 6 OT- 9（ 40Pin External input） Able to trigger

an interrupt

15 Channel 7 OT- 10（ 40Pin External input） Able to trigger

an interrupt

16 Channel 0 HOME 9（ 100Pin External input） Able to trigger

an interrupt

17 Channel 1 HOME 59（ 100Pin External input） Able to trigger

an interrupt

18 Channel 2 HOME 13（ 100Pin External input） Able to trigger

an interrupt

19 Channel 3 HOME 63（ 100Pin External input） Able to trigger

an interrupt

20 Channel 4 HOME 17（ 100Pin External input） Able to trigger

an interrupt

21 Channel 5 HOME 67（ 100Pin External input） Able to trigger

 IMP Series Device Driver Library User Manual

44

an interrupt

22 Channel 6 HOME 5（ 40Pin External input） Able to trigger

an interrupt

23 Channel 7 HOME 6（ 40Pin External input） Able to trigger

an interrupt

24 Channel 0 SERVO 12（ 100Pin External

output）

25 Channel 1 SERVO 62（ 100Pin External

output）

26 Channel 2 SERVO 16（ 100Pin External

output）

27 Channel 3 SERVO 66（ 100Pin External

output）

28 Channel 4 SERVO 20（ 100Pin External

output）

29 Channel 5 SERVO 70（ 100Pin External

output）

30 Channel 6 SERVO 11（ 40Pin External output）

31 Channel 7 SERVO 12（ 40Pin External output）

32 Channel 0 LED Non-external signal output Conditional

triggering

33 Channel 1 LED Non-external signal output Conditional

triggering

34 Channel 2 LED Non-external signal output Conditional

triggering

35 Channel 3 LED Non-external signal output Conditional

triggering

36 Channel 4 LED Non-external signal output Conditional

triggering

 IMP Series Device Driver Library User Manual

45

37 Channel 5 LED Non-external signal output Conditional

triggering

38 Channel 6 LED Non-external signal output Conditional

triggering

39 Channel 7 LED Non-external signal output Conditional

triggering

40 ESTOP 57（ 100Pin External input）

41 P_RDY 58（ 100Pin External

output）

42 MOTION

ENABLE

Non-external signal output

The IMP has already designed the specific use of these inputs and

outputs. If the IMP-WB-1 or IMP-WB-2 is used, the following functions

can be used to perform reading or output operations for the

corresponding inputs and outputs on the IMP-WB-1 or IMP-WB-2.

The IMP Device Driver Library provides the following functions to read

the status of the inputs.

1. Use IMC_LIO_GetHomeSensorStatus() to read the HOME status of

the specified channel. When the HOME status changes, no interrupt

signal is generated. Only this function can be used to check the

HOME status of the specified channel.

 IMP Series Device Driver Library User Manual

46

2. Use IMC_LIO_GetPlusLimitStatus() to check whether the specified

channel has touched the positive limit switch of the hardware. If it is,

the equipment may be in danger of collision, and the user should take

emergency responses immediately. When the positive limit switch of

the hardware is touched, the user-defined ISR will be triggered.

3. Use IMC_LIO_GetMinusLimitStatus() to check whether the specified

channel has touched the negative limit switch of the hardware. If it

is, the equipment may be in danger of collision, and the user should

take emergency responses immediately. When the negative limit

switch of the hardware is touched, the user-defined ISR will be

triggered.

The IMP Device Driver Library provides the following functions to set

the status of the output.

1. Use IMC_LIO_SetServoOn() to enable the servo drive of the

specified channel. This channel is connected to the servo drive port

of the motor drive. When this function is called, the specified channel

can receive the posit ion or velocity commands from the IMP.

2. Use IMC_LIO_SetServoOff() to turn off the servo drive of the

specified channel. This channel is connected to the servo drive port

of the motor driver. When this function is called, the specified

 IMP Series Device Driver Library User Manual

47

channel will no longer receive the position or velocity commands.

After the initialization function is successfully called, the default

status is to turn off the servo drive function.

3. Use IMC_LIO_SetLedLightOn() to set the LED output of the

specified channel. The LED output is connected to the LED indicator

on the IMP. When this function is called, the specified channel is able

to accept LED output commands from the IMP. After the initial ization

function is successfully called, the default LED status is off.

4. Use IMC_LIO_SetMotionEnable() to enable the position (pulse) and

velocity (voltage) command output function of the IMP. When this

function is called, the output function will be enabled. After the

initialization function is successfully called, the default status of the

output function is off.

The output of the IMP has specific applications; however, these

outputs can also be used for general output purposes. For example, some

channels use stepping motors and do not require servo on/off signal

control. In this case, the servo on/off outputs of these channels can be

used for general output purposes.

 IMP Series Device Driver Library User Manual

48

V.2 Hardware Limit Switch Interrupt

The IMP 's posit ive l imit switch and negative l imit switch (or over-

travel limit switch) and Home Sensor (home position or origin position)

provide hardware limit switch interrupt function (referred to as the limit

interrupt). When the situation of reaching a limit switch occurs, the user-

defined ISR will be triggered, and users can use this function to plan the

emergency responding actions.

To use the limit interrupt function, the following steps must be

completed：

1. To define and declare the user-defined LIO ISR, the declaration of

the LIO ISR must follow the definitions stated below：

typedef void(IMC_LIB_CALL *LIOISR)(LIOINT *p);

Therefore, the user-defined LIO ISR can be defined as follows：

void _stdcall LIO_ISR_Function(LIOINT *pstINTSource)

{

 // Determine whether a limit interrupt occurs

 if (pst INTSource-> OTP0)

 {

 /*

 Emergency responding action when the over-travel limit

 IMP Series Device Driver Library User Manual

49

occurs

 */

 }

 }

In the LIO ISR, use OTP 0 ~ OTP 7 / OTN 0 ~ OTN 7 / HOME 0 ~

HOME 7 to determine whether this function is triggered by the limit

interrupt. The definit ion of OTP 0 ~ OTP 7 / OTN 0 ~ OTN 7 / HOME

0 ~ HOME 7 are described as follows：

a. IMP positive limit switch (OT+)

pstINTSource-> OTP0 Channel 0’s OT+

pstINTSource-> OTP1 Channel 1’s OT+

pstINTSource-> OTP2 Channel 2’s OT+

pstINTSource-> OTP3 Channel 3’s OT+

pstINTSource-> OTP4 Channel 4’s OT+

pstINTSource-> OTP5 Channel 5’s OT+

pstINTSource-> OTP6 Channel 6’s OT+

pstINTSource-> OTP7 Channel 7’s OT+

b. IMP negative limit switch (OT-)

pstINTSource-> OTN0 Channel 0’s OT-

pstINTSource-> OTN1 Channel 1’s OT-

pstINTSource-> OTN2 Channel 2’s OT-

 IMP Series Device Driver Library User Manual

50

pstINTSource-> OTN3 Channel 3’s OT-

pstINTSource-> OTN4 Channel 4’s OT-

pstINTSource-> OTN5 Channel 5’s OT-

pstINTSource-> OTN6 Channel 6’s OT-

pstINTSource-> OTN7 Channel 7’s OT-

c. IMP home sensor

pstINTSource-> HOME0 Channel 0’s home sensor

pstINTSource-> HOME1 Channel 1’s home sensor

pstINTSource-> HOME2 Channel 2’s home sensor

pstINTSource-> HOME3 Channel 3’s home sensor

pstINTSource-> HOME4 Channel 4’s home sensor

pstINTSource-> HOME5 Channel 5’s home sensor

pstINTSource-> HOME6 Channel 6’s home sensor

pstINTSource-> HOME7 Channel 7’s Home sensor

In addit ion, the declaration of the LIO ISR needs to add the keyword,

_stdcall. However, if the standalone mode is used, the keyword,

IMC_LIB_CALL, needs to be added.

2. Link user-defined LIO ISR

After initializing the IMP, the LIO ISR needs to be linked. The

function indicator of the ISR is delivered to

IMC_LIO_SetISRFunction(), as follows：

 IMP Series Device Driver Library User Manual

51

IMC_LIO_SetISRFunction(LIO_ISR_Function);

3. Use IMC_LIO_SetPlusLimitTriggerMode() / IMC_LIO_SetMinus

LimitTriggerMode()/IMC_LIO_SetHomeSensorTriggerMode() to set

OTP 0 ~ OTP 7 / OTN 0 ~ OTN 7 / HOME 0 ~ HOME 7 interrupt

triggering mode; namely the upper limit triggering, lower limit

triggering or transition triggering.

4. Use the IMC_LIO_EnablePlusLimitInterrupt() /

IMC_LIO_EnableMinusLimitInterrupt()/ IMC_LIO_EnableHomeSens

orInterrupt() to enable the limit interrupt function.

The following code shows how to use the limit interrupt.

void _stdcall LIO_ISR_Function(LIOINT *pstINTSource)

{

// Determine whether a limit interrupt occurs

if (pst INTSource-> OTP0)

{

/*

Emergency responding action when the over-travel l imit occurs

*/

 IMP Series Device Driver Library User Manual

52

}

}

．

．

if (IMC_OpenDevice())

{

．

．

IMC_LIO_SetISRFunction(LIO_ISR_Function);

// Enable OTP0 interrupt triggering function

IMC_LIO_SetPlusLimitTriggerMode(LIO_OTP0, LIO_INT_FALL);

IMC_LIO_EnablePlusLimitInterrupt(LIO_OTP0, 1);

．

．

}

V.3 Timer Timing Interrupt

 The IMP provides a 32-bit timer. Users can set the t imer, and when

the set time is up, t imer interrupt of the timer (referred to as the timer

interrupt) will be triggered, and the timer will restart . This process will

continue until the user switches off this function. To use the timer

interrupt, the following steps must be completed：

 IMP Series Device Driver Library User Manual

53

1. To define and declare the user-defined timer ISR, the timer ISR must

follow the definitions stated below：

typedef void(IMC_LIB_CALL *TMRISR)(TMRINT *p);

Therefore, the user-defined timer ISR can be defined as follows：

void _stdcall Timer_ISR_Function(TMRINT *pstINTSource)

{

 // Determine whether a timer interrupt occurs

 if (pst INTSource->TIMER)

 {

 /*

 The code to be executed when the set time has ended

 */

 }

 }

In the timer ISR, pstINTSource->TIMER must be used to

determine whether this function is triggered by a timer

interrupt. In addition, the declaration of the timer ISR needs

to add the keyword, _stdcall. However, if the standalone mode

is used, the keyword, IMC_LIB_CALL, needs to be added.

 IMP Series Device Driver Library User Manual

54

2. To link user-defined timer ISR

After initializing the motion control card, the t imer ISR needs to be

linked. The function indicator of the ISR is delivered to

IMC_TMR_SetISRFunction(), as follows：

IMC_TMR_SetISRFunction(Timer_ISR_Function);

3. Use IMC_TMR_SetTimer() to set the timer. The unit for the t imer is

based on the system clock (10ns).

4. Use the IMC_TMR_SetTimerIntEnable() to enable the timer interrupt

function.

 See Also IMC_TMR_GetTimerIntEnable()

5. Use the IMC_TMR_SetTimerEnable() to enable the timer timing

function.

 See Also IMC_TMR_GetTimerEnable()

The following code shows how to use the timer interrupt function .

void _stdcall Timer_ISR_Function(TMRINT *pstINTSource)

{

// Determine whether a timing interrupt occurs

 IMP Series Device Driver Library User Manual

55

if (pst INTSource->TIMER)

{

/*

The code to be executed when the set time has ended

*/

}

}

．

．

if (IMC_OpenDevice())

{

．

．

IMC_TMR_SetISRFunction(Timer_ISR_Function);

 // Set the time of TMR timer to 10ns x 1000000 = 10ms

 IMC_TMR_SetTimer(1000000, 0);

 IMC_TMR_SetTimerIntEnable(1); // Enable the timer interrupt

function

 IMC_TMR_SetTimerEnable(1); / / Enable the timer

．

．

}

	I. Introduction to the Device Driver Library
	II. Motion Control Card Base Address, Interrupt and Reset Function Setting
	III. Pulse Output Control
	III.1 Basic Pulse Output Control
	III.2 Control of Pulse Command Queue (FIFO)
	III.3 Outputting Pulse Command Control
	III.4 Emergency Stop of Pulse Output
	III.5 Counting the Number of Output Pulses
	III.6 Cyclic Interrupt Function
	III.7 Minimum Stock Interrupt

	IV. Encoder Control
	IV.1 Basic Settings and Functions
	IV.2 Encoder Value Triggered Interrupt Service Function
	IV.3 Index Interrupt
	IV.4 Counter Value Latch Function

	V. Local Input and Output (Local I/O) Control
	V.1 Basic Settings and Functions
	V.2 Hardware Limit Switch Interrupt
	V.3 Timer Timing Interrupt

